Pseudotheonamides, Serine Protease Inhibitors from the Marine Sponge Theonella swinhoei ${ }^{1}$

Yoichi Nakao, Akito Masuda, Shigeki Matsunaga, and Nobuhiro Fusetani*
Contribution from the Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan

Received August 31, 1998

Abstract

Six new peptides with serine protease inhibitory activity have been isolated from the marine sponge Theonella swinhoei. Their structures including absolute stereochemistry were unambiguously established by interpretation of spectral data and chemical degradation. Pseudotheonamides $\mathrm{A}_{1}(\mathbf{1}), \mathrm{A}_{2}(\mathbf{2})$, and $\mathrm{B}_{2}(\mathbf{3})$ are linear pentapeptides embracing the rare piperazinone and piperidinoiminoimidazolone ring systems. Pseudotheonamide $\mathrm{C}(4)$ contains v-Tyr (vinylogous tyrosine) instead of a piperazinone ring. Pseudotheonamide D (5) is a tetrapeptide which lacks a C-terminal k-Arg (α-ketohomoarginine) unit. Dihydrocyclotheonamide A (6) is a reduction product of the known cyclotheonamide A (7). ${ }^{2}$

The cyclotheonamides were isolated from the marine sponge Theonella swinhoei collected off Hachijo-jima Island, 300 km south of Tokyo, and are unusual cyclic peptides containing two new amino acids, α-ketohomoarginine (k-Arg) and vinylogous tyrosine (v-Tyr). ${ }^{2}$ Significantly, they possess potent inhibitory activity against serine proteases including thrombin, trypsin, and plasmin. Their mode of action was well elucidated by X-ray crystallography of the complex between cyclotheonamide A (7) and human α-thrombin or trypsin, which disclosed the binding of cyclotheonamide A to the catalytic triad of the enzymes by forming a covalent bond between the α-keto group of the k - Arg residue of cyclotheonamide A and the hydroxyl group of the serine residue of one of the triad residues. ${ }^{3}$ Since the cyclotheonamides have become important model compounds for serine protease inhibitors, we further examined the extract of T. swinhoei, which has resulted in isolation of six new peptides related to the cyclotheonamides: pseudotheonamides $\mathrm{A}_{1}(\mathbf{1})$, A_{2} (2), $\mathrm{B}_{2}(3),{ }^{4} \mathrm{C}(4), \mathrm{D}(5)$, and dihydrocyclotheonamide A (6) (Chart 1). The first three compounds possess the rare piperazinone and piperidinoiminoimidazolone ring systems. This paper describes the isolation, structure elucidation, and activity of these compounds.

Result and Discussion

Frozen sponge samples of the 1993 collection (30 kg , wet weight) were extracted with EtOH , and the extract was
(1) Bioactive Marine Metabolites. Part 86. Part 85: Tsukamoto, S.; Matsunaga, S.; Fusetani, N. J. Nat. Prod., in press.
(2) (a) Fusetani, N.; Matsunaga, S.; Matsumoto, H.; Takebayashi, Y. J. Am. Chem. Soc. 1990, 112, 7053-7054. (b) Nakao, Y.; Matsunaga, S.; Fusetani, N. Bioorg. Med. Chem. 1995, 3, 1115-1122. (c) Nakao, Y.; Oku, N.; Matsunaga, S.; Fusetani, N. J. Nat. Prod. 1998, 61, 667-670.
(3) (a) Maryanoff, B. E.; Qiu, X.; Padmanabhan, K. P.; Tulinsky, A.; Almond, Jr. H. R.; Andrade-Gordon, P.; Greco, M. N.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H.; Fusetani, N. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8048-8052. (b) Lee, A. Y.; Hagihara, M.; Karmacharya, R.; Albers, M. W.; Schreiber, S. L.; Clardy, J. J. Am. Chem. Soc. 1993, 115, 12619-12620. (c) Maryanoff, B. E.; Greco, M. N.; Zhang, H.; Andrade-Gordon, P.; Kauffman, J. A.; Nicolaou, K. C.; Liu, A.; Brungs, P. H. J. Am. Chem. Soc. 1995, 117, 1225-1239. (d) Ganesh, V.; Lee, A. Y.; Clardy, J.; Tulinsky, A. Protein Sci. 1996, 5, 825-835.
(4) Although pseudotheonamide B_{1} has not been isolated, we named compound $\mathbf{3}$ as pseudotheonamide B_{2} based on the same stereochemistry of the piperazinone moiety as in 2.
concentrated and partitioned between ether and $n-\mathrm{BuOH}$. The BuOH layer was repeatedly fractionated by chromatographies on ODS (aqueous MeOH), Sephadex LH-20 (MeOH), and ODS (aqueous MeCN with $0.05 \% \mathrm{TFA}$), followed by reversed-phase HPLC to yield pseudotheonamides $\mathrm{A}_{1}\left(\mathbf{1}, 44 \mathrm{mg}, 1.5 \times 10^{-4} \%\right.$ yield based on wet weight), $\mathrm{A}_{2}\left(2,1.2 \mathrm{mg}, 4.0 \times 10^{-6} \%\right)$, B_{2} $\left(\mathbf{3}, 4.5 \mathrm{mg}, 1.5 \times 10^{-5} \%\right), \mathrm{D}\left(\mathbf{5}, 4.4 \mathrm{mg}, 1.5 \times 10^{-5} \%\right)$, and dihydrocyclotheonamide A ($\mathbf{6}, 6.2 \mathrm{mg}, 2.1 \times 10^{-5} \%$). Samples of the 1996 collection (52 kg , wet weight) were similarly processed to yield 11.4 mg of pseudotheonamide C (4).

Pseudotheonamide $\mathrm{A}_{1}(\mathbf{1})$ had a molecular formula of $\mathrm{C}_{36^{-}}$ $\mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{8}$ as established by HR-FABMS, which was the same as that of cyclotheonamide A (7). Interpretation of the COSY, HMQC, ${ }^{5}$ and HOHAHA ${ }^{6}$ spectra allowed the assignment of spin systems for component amino acids, and for a formamide which was also present in 7. Chemical shift values (Table 1) for the Phe and Pro residues in $\mathbf{1}$ were essentially identical with those in 7, whereas those for the Dpr (2,3-diaminopropionic acid) and k -Arg residues were significantly different. The β-methylene protons of the Dpr residue resonated much closer to each other ($\delta 3.40$ and 3.27) in $\mathbf{1}$ than in 7 ($\delta 4.24$ and 2.95), whereas ϵ-methylene protons of the k -Arg residue in $\mathbf{1}$ were not equivalent [$\delta 3.83$ and 3.24 in 1; $3.17(2 \mathrm{H})$ in 7]. More significantly, pseudotheonamide A_{1} (1) revealed no olefinic signals of the v-Tyr residue in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra. However, signals for a para-substituted phenol and the benzylic δ-methylene (2.89 and 2.61 ppm) adjacent to a nitrogenous γ-methine (3.49 ppm) of v-Tyr were present. The nitrogenous γ-methine was further coupled to another nitrogenous methine ($3.02 \mathrm{ppm} ; \mathrm{H} \beta$) which was in turn coupled to a pair of methylene protons (2.66 and $2.24 \mathrm{ppm} ; \mathrm{H}_{2} \alpha$), thus delineating the backbone of the v-Tyr residue; this unit is now called e-Tyr (ethyleneinserted Tyr) for convenience's sake. Presumably, the v-Tyr residue has undergone an intramolecular Michael addition with an amino group of Phe. ${ }^{7}$

[^0]
Chart 1

1

2

4

5

6
data (Figure 1). $\mathrm{H} \beta(3.02 \mathrm{ppm})$ and $\mathrm{H} \gamma(3.49 \mathrm{ppm})$ in the e-Tyr residue were in a trans-diaxial relationship as evidenced by a coupling constant of 10.2 Hz as well as by the absence of a ROESY correlation between them. Stereochemistry of e-Tyr H β could be deduced from a ROESY cross-peak between D-Phe $\mathrm{H} \alpha$ and e-Tyr $\mathrm{H} \beta$ (vide infra). Though the stereochemistry of $\mathrm{C} \alpha$ in the modified k -Arg residue was not determined spectroscopically, it was presumed that the hydroxyl group was axial, reflecting the anomeric effect. ${ }^{10}$

Absolute stereochemistry of both Pro and Dpr residues were determined to be L by Marfey analysis ${ }^{11}$ of the acid hydrolysate. Interestingly, amino acid analysis of the acid hydrolysate revealed a distinctive peak for Phe which was likely to be formed by retro-Michael reaction followed by hydrolysis; Marfey analysis showed D-configuration for Phe. Absolute stereochemistry of the modified k -Arg was determined as follows. Acid hydrolysis of $\mathbf{1}$ released k -Arg which was detected by amino acid analysis. Although we needed both isomers of k-Arg for Marfey analysis, only the $(3 S)$ isomer, which had been isolated from the acid hydrolysate of cyclotheonamide A (7), was available. To overcome this problem, a chromatographic equivalent of $(3 R)-\mathrm{k}-\mathrm{Arg}$ was prepared by reacting the ($3 S$)-kArg with the Marfey's reagent prepared from D-Ala. ${ }^{12}$ With both

[^1]Table 1. NMR Data for Pseudotheonamide $\mathrm{A}_{1}(\mathbf{1})$ in $\mathrm{CD}_{3} \mathrm{OH}$

standards in hand, we carried out Marfey analysis for the acid hydrolysate which disclosed the $3 S$-stereochemistry for the modified k-Arg residue in 1 (Scheme 1).

Pseudotheonamide A_{1} (1) revealed minor NMR signals with intensity of approximately 20% of the major signals. Virtually all signals were doubled. Though it was not possible to assign all minor signals, they were characterized on the basis of ${ }^{13} \mathrm{C}$ NMR data. All minor ${ }^{13} \mathrm{C}$ signals appeared close to the major signals except for those of the Pro residue; chemical shifts of the major peaks corresponded well with those reported for the trans-isomer ($\mathrm{C} \beta 30.7$ and $\mathrm{C} \gamma 25.7 \mathrm{ppm}$), whereas the minor peaks ($\mathrm{C} \beta 32.9$ and $\mathrm{C} \gamma 23.5 \mathrm{ppm}$) corresponded with those of the $c i s$-isomer. Therefore, it was concluded that the dichotomy of the signals observed in $\mathbf{1}$ was due to geometrical isomerism in the prolyl peptide bond.

The molecular formula of pseudotheonamide A_{2} (2) was determined as $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{8}$ which is identical with that of 7 , on the basis of HR-FABMS $\left[(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / \mathrm{z} 732.3466(\Delta-0.3\right.$ $\mathrm{mmu})$]. The HOHAHA spectrum of $\mathbf{2}$ revealed the presence of

[^2]all spin systems found in 1. HMQC, HMBC, and ROESY data unambiguously disclosed that $\mathbf{1}$ and $\mathbf{2}$ had the same gross structure. However, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts of the piperazinone moiety were different between $\mathbf{1}$ and $\mathbf{2}$ (Table 2). The J value of 3.3 Hz between $\mathrm{H} \beta$ and $\mathrm{H} \gamma$ in e-Tyr and ROESY cross-peaks between $\mathrm{H}_{2} \alpha$ (2.43 and 2.34 ppm) of e-Tyr and $\mathrm{H} \alpha(3.69 \mathrm{ppm})$ of Phe indicated that the stereochemistry of $\mathbf{2}$ at $\mathrm{C} \beta$ was opposite to that in $\mathbf{1}$ (Figure 1). Marfey analysis of acid hydrolysate of $\mathbf{2}$ showed D-Phe, L-Dpr, L-Pro, and (3S)-kArg; therefore, pseudotheonamide A_{2} was an epimer of $\mathbf{1}$.

Pseudotheonamide B_{2} (3) had a molecular formula of $\mathrm{C}_{37^{-}}$ $\mathrm{H}_{45} \mathrm{~N}_{9} \mathrm{O}_{8}$, one carbon atom larger than $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3}$ were similar to those of $\mathbf{1}$, except for more prominent isomerism; the intensity ratio of the major and minor peaks was 3:2, as well as for signals of a new methylene group [$\delta \mathrm{H} 4.39$ (d, $J=12.5 \mathrm{~Hz}$), $4.29(\mathrm{~d}, J=12.5 \mathrm{~Hz}) ; \delta \mathrm{C}$ 68.6] (Table 3). The deshielded chemical shifts for this methylene group and lack of signals for the β-NH of the Dpr residue and NH of the Phe residue indicated that the additional methylene group must be inserted between the β-nitrogen atom of the Dpr residue and the amino nitrogen of the piperazinone moiety.

1

2

Figure 1. Stereochemistry of the piperazinone moiety in $\mathbf{1}$ and $\mathbf{2}$.

Figure 2. Stereochemistry of the piperazinone moiety in 3.

Scheme 1

(L or D)-FDAA: 1-fluoro-2,4-dinitrophenyl-5-(L or D)-alanine amide

Therefore, the gross structure of $\mathbf{3}$ was determined as shown. Stereochemistry of the piperazinone ring was again assigned by interpretation of ROESY data. A J value of 3.9 Hz between $\mathrm{H} \beta(3.14 \mathrm{ppm})$ and $\mathrm{H} \gamma(3.25 \mathrm{ppm})$ of e-Tyr and a ROESY crosspeak between e-Tyr $\mathrm{H}_{2} \alpha$ (2.39 and 2.27 ppm) and Phe $\mathrm{H} \alpha$ (3.67 ppm) implied the stereochemistry of e-Tyr $\mathrm{C} \beta$ in $\mathbf{3}$ to be the same as that in 2. Absolute stereochemistry of the component amino acids was determined by Marfey analysis of the acid
hydrolysate: all component amino acids had the same absolute stereochemistry as in $\mathbf{2}$.

The molecular formula of pseudotheonamide C (4) was again identical with that of cyclotheonamide A (7). The ${ }^{1} \mathrm{H}$ NMR spectrum contained olefinic protons (6.78 and 5.98 ppm) characteristic of v -Tyr residue which were missing in $\mathbf{1 - 3}$. Analysis of 2D NMR data including HOHAHA, HMQC, and HMBC revealed the presence of v-Tyr, α-formyl-Dpr, Phe, Pro, and k -Arg units. These residues accounted for 18 of 19 unsaturations, thereby suggesting cyclization of the k - Arg residue, which was in fact evident from NMR data. Each residue could be connected on the basis of HMBC and ROESY data to construct the gross structure 4. Marfey analysis of the acid hydrolysate of $\mathbf{4}$ resulted in the absolute stereochemistry of the Pro, Dpr, Phe, and k-Arg residues as in the case of $\mathbf{1}$. The absolute stereochemistry at $\mathrm{C} \gamma$ of $\mathrm{v}-\mathrm{Tyr}$ was determined to be S which was evident from the fact that L-Asp was detected in the acid hydrolysate of the ozonolysis product of 4.

Pseudotheonamide D (5) had a molecular formula of $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{6}$ as determined by HR-FABMS. Amino acid analysis as well as ${ }^{1} \mathrm{H}$ NMR data showed the presence of Phe, v-Tyr, α-formyl-Dpr, and Pro. HMBC and ROESY data led to the sequence of Phe/v-Tyr/ α-formyl-Dpr/Pro; the C-terminus was blocked by an amide (7.69 and 6.97 ppm). Stereochemistry of each residue was similarly determined as δ-Phe, $4 S$-v-Tyr, L-Dpr, and L-Pro.

Dihydrocyclotheonamide A (6) displayed a ${ }^{1} \mathrm{H}$ NMR spectrum very similar to that of cyclotheonamide A (7), except for the presence of an additional singlet in $\mathbf{6}$ at 4.08 ppm . The molecular formula of $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{~N}_{9} \mathrm{O}_{8}$ determined by HRFABMS as well as the replacement of the ${ }^{13} \mathrm{C}$ signal of the hydrated ketone by a secondary alcohol indicated that 6 was dihydrocyclotheonamide A , in which the α-keto group of the k - Arg residue was reduced. This was supported by 2D NMR data. Marfey analysis revealed D-, L-, and L-stereochemistry for Phe, Pro, and Dpr residues, respectively. Reduction of cyclotheonamide A with NaBH_{4} gave 6 as the major product; therefore, the stereochemistry of v -Tyr residue and $\mathrm{C} \beta$ of the k - Arg residue was shown to be identical in the two compounds. The remaining $\mathrm{C} \alpha$ stereocenter in the reduced k -Arg unit was determined as follows: dihydrocyclotheonamide A , which was prepared from 7, was hydrolyzed and subjected to ion-exchange chromatography to yield α-hydroxyhomoarginine. This was converted to a cyclic carbamate, whose ${ }^{1} \mathrm{H}$ NMR spectrum revealed a 5.0 Hz coupling constant between H 2 and H 3 , thus suggesting syn stereochemistry (Scheme 2). Therefore, the reduced-k-Arg unit in 6 had $2 R, 3 S$ stereochemistry. ${ }^{13}$

Pseudotheonamides $\mathrm{A}_{1}(\mathbf{1}), \mathrm{A}_{2}(\mathbf{2}), \mathrm{B}_{2}(\mathbf{3}), \mathrm{C}(\mathbf{4}), \mathrm{D}(\mathbf{5})$, and dihydrocyclotheonamide A (6) inhibited thrombin with IC_{50} values of $1.0,3.0,1.3,0.19,1.4$, and $0.33 \mu \mathrm{M}$, respectively, while they inhibited trypsin with IC_{50} values of $4.5,>10,6.2$, $3.8,>10$, and $6.7 \mu \mathrm{M}$, respectively. As revealed by the X-ray crystallography and structure-activity relationship study of synthetic derivatives, potent inhibition of serine proteases by cyclotheonamides is associated with the presence of the α-keto group in the k -Arg residue. ${ }^{3}$ It is therefore not surprising that compounds $\mathbf{1 - 6}$, in which the α-keto group was either modified or missing, showed moderate activity. Similarly, a mixture of diastereomeric aminals obtained by base treatment of cyclotheonamide A was less active. ${ }^{14}$ Our compounds $\mathbf{1 - 4}$ are related to these products by the cyclic aminal structure of the k - Arg residue.
(13) Dondoni, A.; Fantin, G.; Fogagnolo, M.; Pedrini, P. J. Org. Chem. 1990, 55, 1439-1446.

Table 2. NMR Data for Pseudotheonamide A_{2} (2) in $\mathrm{CD}_{3} \mathrm{OH}$

		${ }^{13} \mathrm{C}$	${ }^{1} \mathrm{H}$	HMBC	ROESY
Phe	CO	174.0			
	α	57.9	3.69 dd 9.8, 3.3	174.0, 139.6, 39.0	7.27, 7.23, 3.13, 2.43, 2.34
	β	39.0	3.13 dd 13.9, 3.3	174.0, 139.6, 130.5	7.27, 7.23, 3.69, 2.85
			2.85 dd 13.9, 9.8	174.0, 139.6, 130.5, 57.9	7.23, 3.47, 3.13
	1	139.6			
	2,6	130.5	7.23 d 7.1	130.5, 127.6, 39.0	3.69, 3.13, 2.85
	3,5	129.5	7.27 dd 7.7, 7.1	139.6, 129.5	3.69, 3.13
	4	127.6	7.18 t 7.7	130.5	
	NH		. 18 t 7		
e-Tyr	CO	174.1			
	α	36.2	$2.43 \mathrm{dd} 14.6,10.6$	174.1, 57.9, 50.0	$8.24,3.69,3.47,2.34$
			$2.34 \mathrm{dd} 14.6,10.2$	$174.1,50.0$	$8.24,7.02,3.69,3.65,2.43$
	β	50.0	3.47 ddd 10.6, 10.2, 3.3	174.1, 57.9	7.02, 3.65, 2.85, 2.68, 2.64
	γ	57.9	3.65 m		
	δ	37.0	$2.68 \text { dd 13.9, } 6.5$	131.3, 128.9, 57.9, 50.0	7.20, 7.02, 3.47
			$2.64 \text { dd 13.9, } 8.1$	$131.3,128.9,57.9,50.0$	7.20, 7.02, 3.47
	1^{\prime}	128.9			
	$2^{\prime}, 6^{\prime}$	131.3	7.02 d 8.5	157.4, 131.3, 37.0	2.68, 2.64
	$3^{\prime}, 5^{\prime}$	116.6	6.71 d 8.5	157.4, 128.9, 116.6	
	4^{\prime}	157.4			
	NH		7.20 d 2.7	174.0, 57.9, 50.0	3.65, 2.68, 2.64
formyl	CO	163.5	8.01 bs	50.6	4.91
Dpr	CO	170.3			
	α	50.6	4.91 m		8.26, 8.01
	β	41.7	3.49 m	174.1, 170.3, 50.6	8.26, 8.24
			3.35 ddd 13.1, 6.2, 3.5	174.1, 50.6	8.26, 8.24
	$\alpha \mathrm{NH}$		8.26 d 8.5	163.5	4.91, 3.49, 3.35
	$\beta \mathrm{NH}$		8.24 dd 6.5, 6.2	174.1	$3.72,3.49,3.35,2.43,2.34$
Pro	CO	173.6			
	α	61.7	$4.52 \mathrm{dd} 8.1,4.2$	173.6, 49.0, 30.7, 25.7	7.83
	β	30.7	2.27 m	173.6, 61.7, 49.0, 25.7	7.83, 2.05, 1.94
			2.23 m	173.6, 61.7, 25.7	2.05, 1.94
	γ	25.7	2.05 m	61.7, 30.7	3.72, 3.67
			1.94 m	61.7, 30.7	$3.72,3.67$
	δ	49.0	3.72 m	30.7, 25.7	8.24, 2.05, 1.94
			3.67 m	25.7	2.05, 1.94
$\mathrm{k}-\mathrm{Arg}$	CO	-			
	α	85.6			
	β	52.9	3.87 ddd 12.7, 9.0, 4.1		7.83, 1.78, 1.59
	γ	26.9	$1.87 \text { dddd 13.1, 13.1, 12.7, } 3.3$	25.4	$7.83,3.18$
			$1.78 \text { dddd } 12.7,4.1,3.6,3.5$		7.83, 3.87
	δ	25.4	1.74 dddd 13.9, 4.2, 3.6, 3.3		3.78, 3.18, 1.59
			1.59 ddddd 13.9, 13.5, 13.1, 3.7, 3.5		3.87, 3.78, 1.74
	ϵ	38.8	$3.78 \text { dd 13.3, } 3.7$	$167.3,85.6,26.9,25.4$	$\begin{aligned} & 3.18,1.74,1.59 \\ & 3.78,1.87,1.74 \end{aligned}$
			3.18 ddd 13.5, 13.3, 3.1		
	guanidine	167.3			
	NH		7.83 d 9.0	173.6	$4.52,3.87,2.27,1.87$

Scheme 2

Experimental Section

General. NMR spectra were recorded either on a Bruker AM 600 or JEOL $\alpha-600$ spectrometer. Mass spectral data were obtained using a JEOL SX102/SX102 tandem mass spectrometer. Optical rotation of all compounds was measured by a JASCO DIP-1000 digital polarimeter. UV spectra were recorded on a Hitachi 330 spectrophotometer. Amino acid analyses were carried out using a Hitachi 8500 amino acid analyzer.

[^3]Sponge Specimens and Isolation. The sponge was collected by hand using SCUBA at a depths of $10-25 \mathrm{~m}$ off Hachijo-jima Island, 300 km south of Tokyo, and identified as T. swinhoei by Professor Rob van Soest. The 1993 collection (30 kg wet weight) was extracted with EtOH . The concentrated EtOH extract was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was further extracted with $n-\mathrm{BuOH}$. Fractionation was monitored by inhibition assay against thrombin and trypsin. The n - BuOH extract was separated by ODS flash chromatography using aq MeOH as mobile phase. The active fractions were eluted with 50,70 , and $100 \% \mathrm{MeOH}$, which were combined and further

Table 3. NMR Data for $\mathbf{3 - 6}$ in $\mathrm{CD}_{3} \mathrm{OH}$

separated by gel-filtration on a Sephadex LH-20 column (MeOH) and by ODS flash chromatography (aq MeCN containing 0.05% TFA). The active fractions eluted with 20 and $25 \% \mathrm{MeCN}$ containing 0.05% TFA were combined and then subjected to ODS column chromatography ($24 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$) affording 20 fractions. Fraction $3(119.4 \mathrm{mg})$ was separated by ODS HPLC (COSMOSIL-5C ${ }_{18} \mathrm{AR} ; 15 \%$ MeCN containing $0.05 \% \mathrm{TFA}$) to yield pseudotheonamide A_{1} (1: 44.0 mg) and an impure pseudotheonamide A_{2} fraction (190.0 mg). The latter was separated in three steps by HPLC [COSMOSIL 5C 18 -AR with 12% MeCN containing 0.05\% TFA; capcell pak UG120 with $17 \% \mathrm{MeCN}$ containing 0.05% TFA; and YMC-Pack A-624 S-5 120A NH2 with $\left.\mathrm{CHCl}_{3} / \mathrm{MeOH}(1: 1)\right]$ to yield 1.2 mg of pseudotheonamide A_{2} (2). Fraction $11(250.5 \mathrm{mg})$ was separated in two steps by ODS HPLC (COSMOSIL- $5 \mathrm{C}_{18} \mathrm{AR}$ with $23 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$; and COSMOSIL-5C $\mathrm{C}_{18} \mathrm{MS}$ with $21 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$), and finally on Asahipak GS320 column $(10 \% \mathrm{MeCN}$ containing 0.05% TFA) yielding pseudotheonamide $\mathrm{B}_{2}(\mathbf{3}: 4.5 \mathrm{mg})$ and dihydrocyclotheonamide A (6: 6.2 mg). Fraction $6(156.4 \mathrm{mg})$ was fractionated by

ODS HPLC (COSMOSIL-5C ${ }_{18}$ MS with $18 \% \mathrm{MeCN}$ containing 0.05% TFA) and HPLC on Asahipak GS320 column ($10 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA})$ to afford pseudotheonamide D (5: 4.4 mg$)$. Pseudotheonamide C (4) was isolated from T. swinhoei collected in 1996. The aqueous layer of EtOH extract of the sponge (52 kg wet weight) was chromatographed on an ODS column [three steps: (1) aqueous MeOH , (2) aqueous MeCN , and (3) $15 \% \mathrm{MeCN}$ with $0.05 \% \mathrm{TFA}$] and finally purified by ODS HPLC [capcell pak UG120 with $15 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$] to yield 11.4 mg of 4.

Pseudotheonamide $\mathbf{A}_{\mathbf{1}}(\mathbf{1})$: colorless amorphous solid, $[\alpha]^{29}{ }_{\mathrm{D}}-28^{\circ}$ (c 0.085, MeOH), UV (MeOH) $227 \mathrm{~nm}(\epsilon 14000 \mathrm{sh}), 243(4500 \mathrm{sh})$, 278 (2000 sh), HR-FABMS ($\mathrm{M}+\mathrm{H})^{+} m / z 732.3452$ for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{8}$ ($\Delta-1.8 \mathrm{mmu}$).

Pseudotheonamide $\mathbf{A}_{\mathbf{2}}$ (2): colorless amorphous solid, $[\alpha]^{29}{ }_{\mathrm{D}}-34^{\circ}$ (c 0.065, MeOH), UV (MeOH) $227 \mathrm{~nm}(\epsilon 17000 \mathrm{sh}), 243(7100 \mathrm{sh})$, 278 (2300 sh), HR-FABMS ($\mathrm{M}+\mathrm{H})^{+} m / z 732.3466$ for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{8}$ ($\Delta-0.3 \mathrm{mmu}$).

Pseudotheonamide \mathbf{B}_{2} (3): colorless amorphous solid, $[\alpha]^{29}{ }_{D}-17^{\circ}$ (c 0.050, MeOH), UV (MeOH) $226 \mathrm{~nm}(\epsilon 15000 \mathrm{sh}), 243(4500 \mathrm{sh})$, 278 (1800 sh), HR-FABMS $(M+H)^{+} m / z 744.3447$ for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{8}$ ($\Delta-2.2 \mathrm{mmu}$).

Pseudotheonamide \mathbf{C} (4): colorless amorphous solid, $[\alpha]^{29}{ }_{\mathrm{D}}-16^{\circ}$ (c 0.47, MeOH), UV (MeOH) $227 \mathrm{~nm}(\epsilon 19000 \mathrm{sh}), 242(11000 \mathrm{sh})$, 278 (2300 sh), HR-FABMS $(\mathrm{M}+\mathrm{H})^{+} m / z .732 .3452$ for $\mathrm{C}_{36} \mathrm{H}_{46} \mathrm{~N}_{9} \mathrm{O}_{8}$ ($\Delta-1.8 \mathrm{mmu}$).

Pseudotheonamide D (5): colorless amorphous solid, $[\alpha]^{29}{ }_{D}-11^{\circ}$ (c $0.085, \mathrm{MeOH}), \mathrm{UV}(\mathrm{MeOH}) 225 \mathrm{~nm}(\epsilon 15000 \mathrm{sh}), 243(5100 \mathrm{sh})$, 278 (1600 sh), HR-FABMS (M+H) $m / z 565.2780$ for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{6} \mathrm{O}_{6}$ ($\Delta+0.6 \mathrm{mmu})$.

Dihydrocyclotheonamide A (6): colorless amorphous solid, $[\alpha]^{29}{ }_{\mathrm{D}}$ $+37^{\circ}$ ($c 0.25$, MeOH), UV (MeOH) $225 \mathrm{~nm}(\epsilon 15000 \mathrm{sh}), 243$ (4800 sh), $278(1400 \mathrm{sh})$, HR-FABMS $(\mathrm{M}+\mathrm{H})^{+} \mathrm{m} / z 734.3647$ for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{~N}_{9} \mathrm{O}_{8}(\Delta+2.2 \mathrm{mmu})$.

Amino Acid Analysis. For standard amino acid analysis, 100 mg portion of each peptide was dissolved in 6 N HCl and heated at 110 ${ }^{\circ} \mathrm{C}$ for 5 h in a sealed tube. After the solvent was removed in a stream of N_{2}, the residue was dissolved in $1 \% \mathrm{HCl}$ and subjected to amino acid analysis. Retention times in the amino acid analysis were as follows: Pro (32.32 min), Phe (54.18 min).

Marfey Analysis. A portion ($100 \mu \mathrm{~g}$) of each peptide was hydrolyzed with 6 N HCl at $105{ }^{\circ} \mathrm{C}$ for 12 h . After the solution was dried in a stream of N_{2}, to the residue was added $50 \mu \mathrm{~L}$ of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (FDAA) in acetone ($1 \mathrm{mg} / \mathrm{mL}$) and $100 \mu \mathrm{~L}$ of $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$ and kept at $80^{\circ} \mathrm{C}$ for 5 min . The reaction mixture was neutralized by adding $50 \mu \mathrm{~L}$ of 0.2 N HCl and diluted with $100 \mu \mathrm{~L}$ of $50 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$. A portion of this solution was subjected to ODS HPLC (COSMOSIL 5C ${ }_{18}$-MS, linear gradient from 0 to $50 \% \mathrm{MeCN}$ containing $0.05 \% \mathrm{TFA}$). Peaks were identified by coinjection with standard amino acid derivatives.

Ozonolysis. A solution of each peptides $\mathbf{4 - 6}(100 \mu \mathrm{~g}$ each $)$ in 1 mL of MeOH was cooled to $0^{\circ} \mathrm{C}$. A gentle stream of of ozone was bubbled into the solution for 10 min . After removal of excess ozone by N_{2}, the solution was warmed to room temperature. After addition of $100 \mu \mathrm{~L}$ of AcOH , the solution was concentrated. To the residual solution were added $50 \mu \mathrm{~L}$ of $\mathrm{AcOH}, 50 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{O}, 30 \mu \mathrm{~L}$ of 30% hydrogen peroxide, and $1.2 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$, and the mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h . After cooled to room temperature, the mixture was stirred over Pd / C overnight. The reaction mixture was filterd and concentrated before acid hydrolysis ($5 \mathrm{~N} \mathrm{HCl}, 105{ }^{\circ} \mathrm{C}$), and the hydrolysate was subjected to amino acid and Marfey analyses.

Isolation of k-Arg from 1. Cyclotheonamide A (20 mg) was hydrolyzed with 5 N HCl at $105^{\circ} \mathrm{C}$ for 16 h . After the solution was dried under N_{2} gas, the hydrolysate was subjected to anion-exchange chromatography (Dowex 1) with $\mathrm{H}_{2} \mathrm{O}$, followed by cation-exchange chromatography (COSMOGEL SP, $20 \mathrm{mM} \mathrm{NH} 44 \mathrm{OAc}, \mathrm{pH} 6.6$) to yield $\mathrm{k}-\mathrm{Arg}(2.0 \mathrm{mg})$ in a cyclic form.
$\boldsymbol{\alpha}$-Keto-homoarginine (k-Arg; cyclic form): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{D}_{2} \mathrm{O}\right) \delta 3.68$ (dd 13.8, 4.2; H β), $1.90(\mathrm{~m} ; \mathrm{H} \gamma), 1.85(\mathrm{~m}, \mathrm{H} \gamma), 1.78(\mathrm{~m}, \mathrm{H} \delta), 1.55$ ($\mathrm{m}, \mathrm{H} \delta$), 3.32 (dd 12.6, 4.8; H ϵ), 3.16 (ddd 13.8, 12.6, 3.6 H ϵ). FABMS $m / z 185(\mathrm{M}+\mathrm{H})^{+}$.

Reduction of Cyclotheonamide A. Cyclotheonamide A (10 mg) was reduced with NaBH_{4} in a mixture of THF and DMF. The reaction mixture was stirred at room temperature for 30 min and was subjected to ODS HPLC (COSMOSIL 5C 18 -MS, 17% MeCN containing 0.05% TFA) to yield dihydrocyclotheonamide $\mathrm{A}(8.6 \mathrm{mg})$, which gave the same ${ }^{1} \mathrm{H}$ NMR spectrum as that for 6 .

Reaction of Dihydrocyclotheonamide A. Dihydrocyclotheonamide A (8.6 mg) prepared from 1 was hydrolyzed with 6 N HCl at $110{ }^{\circ} \mathrm{C}$ for 4 h . After the hydrolysate was dried in a stream of N_{2}, it was subjected to anion-exchange chromatography on Dowex $1\left(\mathrm{OH}^{-}\right.$form $)$ with $\mathrm{H}_{2} \mathrm{O}$ to yield reduced $\mathrm{k}-\mathrm{Arg}(2.4 \mathrm{mg})$. To the mixture of reduced $\mathrm{k}-\mathrm{Arg}(1.2 \mathrm{mg})$ and $\mathrm{Im}_{2} \mathrm{CO}(5 \mathrm{mg}$ dissolved in $40 \mu \mathrm{~L}$ of DMF), 500 $\mu \mathrm{L}$ of DMF was added, and the mixture was stirred at room temperature for 5 h . The reaction mixture was lyophilized and subjected to NMR analysis without purification. ${ }^{1} \mathrm{H}$ NMR signals were assigned by means of HOHAHA data.

Acknowledgment. We thank Professor Paul J. Scheuer of University of Hawaii for editorial comments. Thanks are also due to Dr. Rob van Soest of Institute of Systematics and Population Biology, University of Amsterdam, for identification of the sponge. This research was partly supported by Grants-in-Aid from the Ministry of Education, Science, Culture, and Sports of Japan, and Research for the Future Program from JSPS (JSPS-RFTF96I00301).

Supporting Information Available: NMR spectra for $\mathbf{1 - 6}$ (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.
JA9831195

[^0]: (5) Summers, M. F.; Marzilli, L. G.; Bax, A. J. Am. Chem. Soc. 1986, 108, 4285-4294.
 (6) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093-2094.
 (7) March, J. Advanced Organic Chemistry; Willey-Interscience: New York, 1992; p 768.

[^1]: (9) Edgar, G.; Hinegardner, W. S. J. Biol. Chem. 1923, 56, 881-886.
 (10) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry, Pergamon: Oxford, 1983; pp 4-21.
 (11) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591-596.

[^2]: (12) Matsunaga, S.; Fusetani, N. J. Org. Chem. 1995, 60, 1177-1181.

[^3]: (14) Maryanoff, B. E.; Zhang, H.; Greco, M. N.; Zhang, E.; VanderhoffHanaver, P.; Tulinsky, A. Tetrahedron Lett. 1996, 37, 3667-3670.

